Apr 5: Groupactions and the structare of roots
Today's outtine

- Recien groap actios
- Structure of roots of pilynonials
- Syametrí functions
- (wed) Lagrangés soln to guatic
§1. Group actions
Let G be a group.
Defy A group action of G on a set X is a law that defines $g \cdot X \in X$ for ar y $g \in G$ $(G \times x \rightarrow X \text { map })^{x \in X}$ $(9, x) \longmapsto g x$
satisfying
(1) $(g h) x=g(h x)$
(2) $e \cdot x=x$ (where eth is the ie len
Ex 1 G acts on G via nulkpiox

$$
g \in C, x \in G \quad g \cdot x=g x
$$

muting
Ex $2 G$ act G via conjugation $g \in G, x \in h \quad g \cdot x:=g \times g^{-1}$

Dee Giver G acting on X and an element $x \in X$, ur define

- the orbit $c_{x}=\left\{g, x \mid g \in C_{1}\right\}$

$$
\begin{aligned}
& \text { - the stabitioer } \\
& G_{x}=\{g \in h \mid g \cdot x=x\} \\
& \text { In } E_{x} \text {, if } x \in G \\
& \text { orbit } C_{x}=\left\{g \times g^{-1} \mid g(h)\right. \\
& \text { "conj-gay class" } \\
& C_{i x}=\left\{g \in G l \frac{\operatorname{la}^{2 x g}=x}{g x=x g}\right\}
\end{aligned}
$$

Defn Given G acting on X anl an elemert $x \in X$, wr detine

- the orbit $G x=\left\{g \cdot x \mid g \in C_{1}\right\}$
- the stabilizer

$$
G_{x}=\{g \in G \mid g \cdot x=x\}
$$

Ex 3
$G=$ grap of sypmetries of the square $\square \subset \mathbb{R}^{2}$
here: syumetry is on inversbble 2×2 real matrox Lie. linear tranbom of (2) that priserves the spper

- rotation 90° clovenira r
- reflextur avoss x-axis S

$$
\left.\begin{array}{l}
G \quad \text { retexten a voss } x \text {-axis } s \\
G=\left\langle r_{2}\right| \sigma^{4}=s^{2}=i l \\
=D_{4} \quad \text { srs }=r^{3}
\end{array}\right\rangle
$$

24 elemerts

$$
\begin{aligned}
& G_{x}=\{e\} \quad \begin{array}{ll}
4 & 1 \\
: 2
\end{array}
\end{aligned}
$$

Croupactin fact: C acting x^{x} Ex 4 h fold

Reasin $G \underset{f}{f} X$

$$
\begin{aligned}
& g \longmapsto g x \\
& \min (f)=C_{x} \text { orbit } \\
&\left\{g(G) f(g)=x\left\{=C_{x}\right. \text { stabls }\right. \\
& \sim C / C_{x} \cong C_{x} \\
& \frac{\left(\# C_{i}\right)}{\left(H C_{x}\right)} \# C_{x}
\end{aligned}
$$

$x^{2}+y^{2} \in k[x, y]$ symutis. $x^{2}+y^{2} \in k[x, y, z]$ no sins simumi $x^{2}+y^{2}+z^{2} \in K[x, y, z]$ syan
$K\left[x_{1}, \ldots, x_{n}\right]$ polyworial ing There is a action of S_{n} on $k\left[x_{1}, \ldots, x_{n}\right]$ defred by; given $\sigma \in S_{n} \& f \in k\left[x_{1}, x, x\right]$

$$
(\sigma \cdot f)\left(x_{1}, \cdots, x_{n}\right):=f\left(x_{\sigma(1}, \cdots, x_{\text {out }}\right)
$$

Ex: S_{2} acting $k[x, t]$
(12). $\left(x+y^{2}\right)_{n+5}=y+x^{2}$
(i2). $(x y)=x y$
Deth A phitronial $f \in \mathcal{H}\left[x_{1}, \ldots, x_{2}\right]$ is spmuetric if $\forall \sigma \in S_{n} \sigma$. $f=f$ Equicelently, stabiline $G_{f}=S_{n}$ \Longleftrightarrow onsit $c f=\{f\}$
\$2 Structive of roots h fidel
Remainder Herm If $f(x)+k[y]$ aud $\alpha \in l e$, then yon con write

$$
f(x)=(x-\alpha) g(x)+c
$$

for $g(x) \in k[x]$ an $c \in k$.
where $\operatorname{deg} g<\operatorname{deg} f$.
Rules α root of $f \Leftrightarrow c=0$ $\#(x-\alpha) \backslash f$

Cor: If $f(x) \in k[y]$ has degree n, trouts of $f(x) \leq n$
Cor If \#roots of $f(x)=n$,
then $f(x)=a_{0}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for nolo α_{y-}, α_{n}.

Fund the of atgiber
If $f(x) \in \mathbb{C}[x]$ is non-cinstat, Hen $f(x)$ has a complex not,
Key doservatios Suppose

$$
\begin{aligned}
f(x) & =x^{n} t \cdots+a_{1} x+a_{0} \\
& =\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
\end{aligned}
$$

has n roots.

- Gives formulas for coettriest in terms of roots

$$
\begin{aligned}
& a_{0}=(-1)^{n} \alpha_{1} \cdots \alpha_{n} \\
& a_{1}= \\
& a_{i}=(-1)^{\imath} \sum_{12} \alpha_{j_{1}} \alpha_{j_{1}} \alpha_{j_{2}} \cdots j_{j} \leqslant n \\
& a_{n-1}=-\left(\alpha_{1}+\cdots \alpha_{n}\right)
\end{aligned}
$$

These are symmetric polynowists

Detinc eberentary sym. polyominp

$$
\begin{aligned}
S_{n} & =\alpha_{1} \cdots \alpha_{n} \\
\vdots & =\sum_{1 \leq} \alpha_{j}, \alpha_{j} \cdots \alpha_{j_{k}} \\
S_{k} & =\alpha_{j_{k}} \leq n \\
S_{1} & =\left(\alpha_{1}+\cdots \alpha_{n}\right)
\end{aligned} \alpha_{i} \alpha_{1 r e v a r a b e s}^{n=2}
$$

